
CEWES MSRC/PET TR/98-27

The BLASBench Report

by

Phillip J. Mucci
Kevin London

04h02098

Work funded by the DoD High Performance Computing
Modernization Program CEWES
Major Shared Resource Center through

Programming Environment and Training (PET)

Supported by Contract Number: DAHC 94-96-C0002
Nichols Research Corporation

Views, opinions, and/or findings contained in this report are those of the author(s) and should not be
construed as an official Department of Defense Position, policy, or decision unless so designated by
other official documentation.

The BLASBench Report

Philip J. Mucci

Kevin S. London

mucci@cs.utk.edu

london@cs.utk.edu

March, 1998

1 Introduction

BLASBench is a benchmark designed to evaluate the performance of some kernel operations
of di�erent implementations of the BLAS or Basic Linear Algebra Subroutines. The BLAS
are found in some form or another on most vendors' machines and were initially developed
as part of LINPACK. Their goal was to provide a standardized API for common Vector-
Vector, Vector-Matrix and Matrix-Matrix operations. A version of the BLAS is available
from Netlib at http://www.netlib.org/. This version is subsequently referred to as the
reference version. The reference BLAS are completely unoptimized Fortran codes intended
as a reference for correctness to the vendors.

2 Goals of BLASBench

BLASBench aims to do the following:

� Evaluate the performance of the BLAS routines in MFLOPS/sec.

� Provide information for performance modeling of applications that make heavy use of
the BLAS.

� Evaluate compiler e�ciency by comparing performance of the reference BLAS versus
the hand-tuned BLAS provided by the vendor.

� Validate vendor claims about the numerical performance of their processor.

1

� Compare against peak cache performance to establish bottleneck, memory or CPU.

3 Description

BLASBench currently benchmarks the three most common routines in the BLAS. They are:

� AXPY - Vector addition with scalar multiplication, �x+ y

� GEMV - Matrix-vector multiplication with scalar multipication, �Ax+ �y

� GEMM - Matrix-Matrix multiplication with scalar multiplication, �AB + �C

The benchmark can run in either single or double precision. This is important as many
systems cannot sustain the additional memory bandwidth required by using double precision
data. The test space is highly tunable, as are some of the metrics BLASBench reports.
The benchmark reports its results in MFLOPS/sec and MB/sec. These numbers are not
computed from hardware statistics, but rather from the absolute operation and memory
reference count required by each algorithm.

4 How it works

BLASBench is a C program that calls BLAS routines written in Fortran so that dynamic
memory allocation can be performed. For each test, BLASBench allocates its memory in
such a way that the total amount of memory taken up by each test is less than or equal
to the nearest power of two. The rationale for this is that our cache sizes are always in a
power of two. Once the memory is allocated, the arrays are initialized, and the test is run
for a certain number of iterations. By default, the iteration count is not constant over each
problem size. BLASBench trys to keep the amount of data \touched" by each run constant.
This means that larger problem sizes run for fewer iterations. The e�ect of this is that the
run time for each size is approximately constant. BLASBench provides an option to keep the
iteration count constant across all tests. After each size is tested, the cache is
ushed and
BLASBench either proceeds to the next size or repeats that size, depending on the options
given to the program. BLASBench allows you to repeat each size any number of times. This
could be used to validate the numbers from each size on a time-shared system. By default,
BLASBench calls the BLAS routines with the leading dimension of each array or vector set to
the exact size of that vector. This means that the BLAS routines operate on the entire data
set. Frequently, however, BLAS routines are called upon smaller portions of larger arrays
and matrices, thus an option is provided to keep the leading dimension constant among every

2

test. In this case, BLASBench allocates the largest possible data set, and simply changes
the working set size passed to each BLAS routine.

5 Using BLASBench

5.1 Obtain the Distribution

Download the latest release from either of the following URLs:

http://www.cs.utk.edu/�mucci/blasbench

ftp://cs.utk.edu/pub/mucci/blasbench.tar.gz

Now unpack the installation using gzip and tar.

kiwi> gzip -dc blasbench.tar.gz | tar xvf -

kiwi> cd blasbench

kiwi> ls

CVS/ Version blasgraph.gp index.html

Makefile bb.c conf/ make.def@

README blasbench.html doc/ samples/

5.2 Build the Distribution

First we must con�gure the build for our machine, operating system and BLAS libraries. All
con�gurations support the reference BLAS if available. Running make with no arguments
lists the possible targets.

kiwi> make

Please use one of the following targets:

sunos sunos4

solaris sunos5

sunmp

alpha

linux

hppa

sgi

sgi-o2k o2k

sgi-pca pca

3

t3e

t3d

ibm-pow2 ibm-sp2 sp2 pow2

ibm-pow pow

Con�gure the build. Here, we are using a Solaris workstation.

kiwi> make solaris

ln -s conf/make.solaris make.def

Please check the VBLASLIB variable in make.def and make sure

that it is pointing to the vendor BLAS library if one exists.

Then type 'make'.

Examine the make.def �le to ensure proper compiler
ags and paths to the di�erent
BLAS libraries. The BLASLIB variable should contain the absolute path to the reference
BLAS library and the VBLASLIB variable should contain the absolute path to the vendor's
BLAS library. If one or the other is not available, just leave it blank and that speci�c exe-
cutable will not be generated.

Now build it. Depending on whether or not both BLASLIB and VBLASLIB are set, one
or two executables will be generated.

kiwi> make

cc -fast -dalign -DREGISTER -c bb.c -o bb.o

if [-f "/src/icl/LAPACK_LIBS/blas_SUN4SOL2.a"];

then f77 -o blasbench bb.o /src/icl/LAPACK_LIBS/blas_SUN4SOL2.a ; fi;

if [-f "/kevlar/homes/susan/bin/solaris/libsunperf.a"];

then f77 -o vblasbench bb.o /kevlar/homes/susan/bin/solaris/libsunperf.a ;

fi;

Now type 'make run'.

5.3 Running BLASBench

BLASBench can be run from the command line, but it is intended to be run through the
make�le. Running it via the make�le automates the collection and presentation process. By
default, the make�le runs both executables with the arguments -c -o -e 1 -i 1. This says
that the iteration count should be constant, the output should be reported in MFLOPS/sec,

4

each size should be repeated only once and the iteration count should be set to one. You
can change the default settings by changing the BBOPTS variable in the make�le after you
have con�gured the distribution.

kiwi> make run

if [-x blasbench]; then blasbench -e 1 -i 1 -c -o -v > daxpy.dat; fi

if [-x blasbench]; then blasbench -e 1 -i 1 -c -o -a > dgemv.dat; fi

if [-x blasbench]; then blasbench -e 1 -i 1 -c -o -t > dgemm.dat; fi

if [-x vblasbench]; then vblasbench -e 1 -i 1 -c -o -v > vdaxpy.dat; fi

if [-x vblasbench]; then vblasbench -e 1 -i 1 -c -o -a > vdgemv.dat; fi

if [-x vblasbench]; then vblasbench -e 1 -i 1 -c -o -t > vdgemm.dat; fi

.

.

.

Now do a make datafiles.

At this point, depending on whether or not you have GNUplot installed on your system,
you have the choice of either packaging up the data�les for analysis on another machine, or
generating the graphs in place.
First we must package up the data�les.

kiwi> make datafiles

.

.

.

daxpy-kiwi.dat

dgemm-kiwi.dat

dgemv-kiwi.dat

vdaxpy-kiwi.dat

vdgemm-kiwi.dat

vdgemv-kiwi.dat

blasgraph.gp

compare.gp

custom.gp

vcustom.gp

kiwi.info

Now do a 'make graphs'.

5

If you don't have GNUplot, you can do this on another machine

using the kiwi-bp-datafiles.tar file.

Now make the graphs.

kiwi> make graphs

gnuplot < custom.gp > blasperf.ps

UTK BLAS graph is in blasperf.ps

gnuplot < vcustom.gp > vblasperf.ps

Vendor BLAS graph is in vblasperf.ps

gnuplot < compare.gp > compare.ps

Vendor BLAS graph is in vblasperf.ps

This will result in either one or three graphs. Each graph contains the performance in
MFLOPS of all three operations. They are named as follows:

� blasperf.ps - Postscript �le of the reference BLAS.

� vblasperf.ps - Postscript �le of the vendor's BLAS.

� compare.ps - Comparison of the two.

5.4 Arguments to BLASBench

kiwi> blasbench -h

Usage: blasbench [-vatsco -x # -m # -e # -i #]

-v AXPY dot product benchmark

-a GEMV matrix-vector multiply benchmark

-t GEMM matrix-matrix multiply benchmark

-s Use single precision floating point data

-c Use constant number of iterations

-o Report Mflops/sec instead of MB/sec

-x Number of measurements between powers of 2.

-m Specify the log2(available physical memory)

-e Repeat count per cache size

-l Hold LDA and loop over sizes of square submatrices

-d Report dimension statistics instead of bytes

6

-i Maximum iteration count at smallest cache size

Default datatype : double, 8 bytes

Default datatype : float, 4 bytes

Defaults if to tty : -vat -x1 -m24 -e2 -i100000

Defaults if to file: -t -x1 -m24 -e1 -i100000

6 Results on the CEWES MSRC Machines

The following graphs summarize our runs on each of the CEWES MSRC machines during
dedicated time. The machines are the SGI Origin 2000, the IBM SP and the Cray T3E.
The peak MFLOPS is as reported by the vendor and is simply computed as a product of
the clock speed times the number of independent
oating point multiplies and adds that can
be computed per cycle. The cache size and theoretical peak MFLOPS for each machine are
listed as follows.

Machine Cache Peak
SGI Origin 2000 32K,4MB 390
IBM SP 128K 240

Cray T3E 8K,96K 900

7

6.1 DAXPY (Double Precision AXPY)

y = �x+ y

0

10

20

30

40

50

60

70

16 64 256 1024 4096 16384 65536 262144 1.04858e+06

M
flo

ps
/S

ec

Vector Length

Vendor BLAS performance for DAXPY at CEWES MSRC

Cray T3E, jim
IBM SP, osprey

Origin 2000, origin

Figure 1: Performance of Vector-Vector Addition with Scale

The DAXPY operation is highly bound by the latency of cache and the throughput of the
main memory subsystem. Latency is a factor because data is continuously being replaced in
the cache. Every line that is loaded is used once and then discarded. The data from each
vector is never re-used. Thus, for each cache line, we must incur the cost of
ushing the
dirty line and loading the new data. Because the data items are accessed sequentially, cache
features like requested data �rst1 line bu�ering and non-blocking2 help very little.

The performance of this benchmark is highly dependent on cache line size, but indepen-
dent of cache size. The reason is that the cache simply adds latency to memory accesses. As
there is no data re-use, the cache is of zero bene�t. The size of a cache line re
ects the size
of the unit of transfer between cache and main memory. Moving a lot of data at once is a
performance win because of high latency of accessing the main memory.

1The cache controller returns the missed-upon operand �rst and then the rest of the line.
2Multiple outstanding misses can be satis�ed at once.

8

Figure 1 shows the results of performing vector-vector addition for increasing vector
lengths of double words. Here we �nd that the SP far outperforms the other two machines.
Interestly enough, the SP has the simplest memory subsystem and the largest line size at
128 bytes. Although the T3E had the stream bu�ers enabled, its performance was still poor.
The Origin's non-blocking cache didn't help either.

9

6.2 DGEMV (Double Precision GEMV)

C = �Ax+ �y

0

20

40

60

80

100

120

140

160

180

4 8 16 32 64 128 256 512 1024 2048

M
flo

ps
/S

ec

Dimension

Vendor BLAS performance for DGEMV at CEWES MSRC

Cray T3E, jim
IBM SP, osprey

Origin 2000, pagh

Figure 2: Performance of Matrix-Vector Multiplication with Scale

The DGEMV operation is an operation that stresses both the capacity and the latency of
the cache. It provides us with some opportunity of cache re-use provided the implementation
is blocked or tiled such that portions of the matrix and vectors remain in cache as long as
possible.

Figure 2 shows the performance of this operation on the three machines under study. Note
that while performance of the SP and T3E nearly tripled that for DAXPY, the Origin only
doubled. We attribute again to its small line size of 64 bytes. The T3E experienced a large
performance improvement because of its hardware prefetching. This time the prefetching is
highly e�ective because data is re-used and the ratio of
oating point operations to number
of memory references is greater.

10

6.3 DGEMM (Double Precision GEMM)

C = �AB + �C

0

100

200

300

400

500

600

700

800

900

1 2 4 8 16 32 64 128 256 512 1024

M
flo

ps
/S

ec

Dimension

Vendor BLAS performance for DGEMM at CEWES MSRC

Cray T3E, jim
IBM SP, osprey

Origin 2000, pagh
900 MFlops Peak Cray T3E

540 MFlops Peak IBM SP
390 MFlops Peak Origin 2000

Figure 3: Performance of Matrix-Matrix Multiplication with Scale

Matrix-matrix multiplication performs well because it provides a lot of opportunity for
cache re-use. By tiling the matrices, the working set can be reduced to the size of cache
and thus only capacity misses are taken. For this reason, the performance of DGEMM has
long served as a good indicator of a machine's peak practical performance. A machine with
an adequate memory subsystem like the SP can achieve very high e�ciencies, i.e. high
percentage of the vendor's published MFLOP rating.

The reader should notice that clock speed and L2 cache size do not play as critical a role
in the performance of this routine as one might think. The spikes in the T3E's performance
curve are due to the matrix dimension being a multiple of the block size. For other cases, the
GEMM routine must engage in rather lengthy cleanup code. The small cache/line size of the
T3E simply exaggerates the performance loss. The SP, with its large line size and ability to
issue two multiply-add instructions as well as a load/store per cycle, does quite well reaching
approximately 90 percent e�ciency. The Origin appears to su�er from its small cache line

11

size and its inability to issue a load/store every cycle. Like the Power2, the R10000 processor
can issue two multiply-adds per cycle, however, its memory system does not appear to be
able to supply the operands fast enough for peak performance.

7 Future work

� Provide an option for measuring speci�c problem sizes and ranges.

� Provide an option to specify the problem sizes in dimensionality.

� Provide an option to specify the starting problem size.

� Use specialized, high-resolution timers where available.

� Add additional BLAS routines TRSM, TRSV, and SYR2K.

� Add parameters to tune the placement and padding of the arrays.

� Standardize con�guration with GNU autoconf.

� Grab machine con�guration and store it with each run.

� Standardize data/graph naming scheme with timestamp.

8 References

1. Computer Architecture, A Quantitative Approach by David A. Patterson, John L. Hen-
nessy, David Goldberg, Published by Morgan Kaufmann Publishing, San Francisco,
1996, ISBN: 1558603298

2. The Science of Computer Benchmarking (Software, Environments, Tools) by Roger W.
Hockney, Published by Society for Industrial and Applied Mathematics, Philadelphia,
1996, ISBN: 0898713633

The BLAS Homepage http://www.netlib.org/blas

12

